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The Crystal and Molecular Structure of p-Glucono-(1,5)-lactone”

By M.L.HACKERT AND R. A.JACOBSON
Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010, U.S.A.

(Received 24 November 1969)

The crystal structure of p-glucono-(1,5)-lactone has been determined by three-dimensional X-ray
analysis. The crystals are orthorhombic, space group P212,2, a=7-838 (1), b=12-332 (2), c=7-544 (1) A
and Z=4. The structure was solved using Patterson map-symmetry map superposition techniques.
Full-matrix, weighted, least-squares refinement gave a final agreement index of R=0-046 for 974 ob-
served reflections recorded by counter methods using a -2 step scan technique and Zr-filtered MoKa
radiation. The restraint of the planar carbonyl group imposes a distorted half-chair conformation on
the d-lactone ring system. Extensive intermolecular hydrogen bonding occurs throughout the crystal.

Introduction

The crystal structure of D-glucono-(1,5)-lactone has
been determined because a knowledge of the molecular
conformation of a typical aldonolactone in the solid
state may be relevant to an understanding of the man-
ner in which these compounds inhibit glycosidases and
other enzymes of carbohydrate metabolism. Prelimi-
nary results of this investigation have been reported
previously (Hackert & Jacobson, 1969). All non-hydro-
gen positions were determined with the aid of a sym-
metry map and the Patterson superposition technique.
We feel that this method, or a modification of it, is
generally applicable for moderately sized molecules.

Experimental
Crystal data
CsH 004, M=178-14 g.mol-!. Orthorhombic P2,2,2,
a=17-838+0-001, 5=12-332 £ 0-002,
c=7-544+0-001 A, V'=729-2 A3, D,=162 g.cm3,
Z=4, F(000)=2376, Mo Kx(2=0-7107 A),
pu=1:60 cm~1.

Suitable crystals were obtained by recrystallizing com-
mercially available glucono-d-lactone from a saturated
DMF (dimethylformamide) solution allowed to evap-
orate slowly. The colorless crystals grew with b per-
pendicular to, and a and ¢ along, the diagonals of the
broad face. Precession and Weissenberg photographs
exhibited mmm Laue symmetry with alternate extinc-
tions along the axes indicating the orthorhombic space
group P2,2,2;. The unit-cell parameters and their stan-
dard deviations were obtained by a least-squares fit to
14 independent reflection angles whose centers were
determined by left-right, top-bottom beam splitting on
a previously aligned Hilger—Watts four-circle diffracto-
meter (Mo Ku radiation). Any error in the instrumental
zero was eliminated by centering the reflection at both

* Work performei at the Ames Laboratory of the U.S.
Atomic Energy Commission. Contribution No, 2647,

+26 and —26. The lattice parameters obtained agree
well with those found by Jeffrey (1968).

A crystal of dimensions 0-24 x0-20 x0-12 mm was
mounted on a glass fiber with b along the spindle axis
for data collection. Intensity data were collected at
room temperature (24°C) using a fully automated
Hilger-Watts four-circle diffractometer equipped with
scintillation counter and interfaced with an SDS-910
computer in a real-time mode. Two equivalent octants
of data were collected using Zr-filtered Mo Ko radia-
tion within a @ sphere of 35° (sin 8/A=0-8071). The
6-20 step-scan technique, 0-01°/step counting for
0-4096 sec/step was employed with a take-off angle
of 4:5°. To improve the efficiency of the data collection
process, variable-step symmetric scan ranges were used.
The number of steps used for a particular reflection
was 50+ 2 per degree 6. Individual backgrounds were
obtained from stationary-crystal stationary-counter
measurements for one-half the total scan time at each
end of the scan.

The intensities of three standard reflections were
measured periodically during the data collection. Mon-
itoring options based on these standard counts were
employed to maintain crystal alignment and to stop
the data collection process if the standard counts fell
below statistically allowed fluctuations. A total of 3762
reflections were recorded in this manner.

The intensity data were corrected for Lorentz-polar-
ization effects. Because of the small linear absorption
coefficient, no absorption correction was made. The
minimum and maximum transmission factors were 0-96
and 0-98 respectively. Because absorption was negli-
gible, the consistency of equivalent data was easily
checked. Those equivalent reflections differing by more
than 5¢ = 5)/(TC) were retaken. This affected some 150
reflections. The individual values of F2 from the equiv-
alent octants were then averaged to yield 1851 in-
dependent F? values. Standard deviations in the inten-
sities (o) were estimated from the average total count
(TC) and background (BK) values by

(01)2=TCay + BKgy +(0-05*TCayv)?+(0-05* BKay)? .



204 THE CRYSTAL AND MOLECULAR STRUCTURE OF p-GLUCONO-(1,5)-LACTONE

Of the 1851 independent reflections, 974 had F2>
2-5*gr. These were used in the initial stages of refine-
ment. The weights used in the least-squares refine-
ment were w=1/(gr)* where or=[(I+0a)/Lp]t/2—F,.
When all atom positions were located, final weighted
least-squares refinement was completed using all of the
independent reflection data.

Solution and refinement of the strcuture

The observed data were used to compute an unsharp-
ened Patterson map. The resulting map contained many
broad, overlapping peaks which made it unsuitable
for superposition techniques. To reduce the peak width,
sharpened coefficients were computed by

[Pl =[1F il /(fK)1? exp [(2B-B’) sin 0/47],

where f= >fil>2Zj, k is a scale factor, B is the overall
isotropic temperature factor, and B’ is a variable used
to minimize rippling resulting from sharpening. Esti-
mates of the overall temperature and scale factors were
obtained from a Wilson plot. A sharpened Patterson
mapAof good resolution was obtained using 2B-B'=
20 Az,

Examination of the sharpened Patterson map, and
initial superposition attempts produced no realistic
model; therefore a symmetry map (Mighell & Jacob-
son, 1963) was next calculated. The value assigned to
each point of the symmetry map was obtained by tak-
ing the minimum of the values of the associated points
on the three Harker planes. In order that no informa-
tion on these planes be discarded, the maximum value
at the point and the four other points immediately sur-
rounding it in the plane was taken before carrying out
the minimum procedure. After a couple of unpromis-
ing choices, a single peak was selected from the 64
images of the orthorhombic unit cell present in the
symmetry map and a set of four symmetry map-Patter-
son map superpositions was carried out. Analysis of
the resulting map showed that there were only 32 con-
sistent, independent peaks remaining. A second peak
was chosen from what appeared to be the same image
and another set of four such superpositions was car-
ried out. Analyzing the resultant map and comparing
it with the first reduced the number of possible peak
positions to 18 with a fragment of the molecule now
readily observable. A third peak was chosen from the
visible fragment and another set of superpositions

Table 1. Final heavy-atom atomic coordinates and thermal parameters*t

x y z bu B2 Bs3 b1z b3 B3
c(ly 02071 (4) 02214 (2) 0-4968 (3) 9 4) 4@ TA@) -4 0 (4) 3(2)
C(2) 0-1911 (3) 0-1294 (2) 0-6312 (3) 82 (4) 30(1) 86 (4) 3(2) 2(4) 2(2)
C(@3) 0-1067 (3) 0-1632 (2) 0-8022 (3) 81 (4) 36 (1) 69 (4) 6 (2) 8 (4) 9(2)
Cc4) 0-1868 (4) 0-2678 (2) 0-8653 (3) 96 (4) 30 (2) 67 (4) 6 (2) 1) 4(2)
C(5) 0-1586 (4) 0-3581 (2) 0-7304 (3) 100 (4) 36 (1) 68 (4) 7Q) -0 4 (2)
C(6) 0:2550 (3) 0-4599 (2) 0-7670 (4) 111 (4) 33 (2) 78 (4) -2 -1 -0
o(1) 0-2238 (3) 0-2023 (2) 0-3407 (2) 220 (5) 56 (2) 72 (3) —16 (2) 16 3) -0Q)
0(2) 0-1041 (3) 0-0415 (1) 0-5520 (2) 122 (4) 351 118 (3) —-3(2) 73) —12 (2)
0(3) 0-1304 (3) 0-0782 (2) 0-9627 (3) 135 (4) 38 (1) 98 (3) 15(2) 24 (3) 22 (2)
o) 0-1097 (3) 0-3061 (2) 1-0248 (2) 192 (5) 47 (1) 71 (3) 8 (2) 19 (3) 0(2)
O(5) 0-2100 (3) 0-3233 (1) 0-5521 (2) 219 (5) 37 (1) 60 (3) —13(2) 8(3) 3(2)
0(6) 0-4331 (3) 0-4429 (2) 0-7852 (3) 103 (4) 69 (2) 102 (4) 9(2) -6 (3) 9 (2)

* Standard errors of the coordinates and the B:; and their standard errors are x 104. The B;; are defined by:
T=exp [—(h2B11+ k2P22 + 12833+ 2hk 12+ 2hIB13 4 2k1B23)] .
T Numbers in parentheses here and in succeeding Tables are estimated standard deviations in the last significant digits.

D-GLUCOND- (1-53 -LACTAONE

0-GLUCONG- (1-5) -LACTANE

Fig. 1. Stereogram of molecule with thermal ellipsoids scaled to enclose 50% probability.
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made. Comparison of the three maps easily resolved
the previous ambiguities, locating all carbon and oxy-
gen atom positions. Further details of the method have
been reported (Jacobson, 1970).

Three cycles of full-matrix least-squares refinement
of these heavy-atom positional and isotropic thermal
parameters gave a conventional discrepancy index R=
2|1 Fol = |Fel|/21Fol =0-109 and a weighted R value
WR=[2w(|Fol —|Fc)}/>w|Fol2]/2=0:133 for the 974
observed reflections. The scattering factors used for
carbon and oxygen were those of Doyle & Turner
(1968). A difference electron density map at this stage
showed that all the non-hydrogen atoms had been ac-
counted for, but that some anisotropic motion was
evident. Anisotropic refinement of all heavy atom posi-
tions for two additional cycles lowered the discrepancy
index to R=0-071 and wR=0-090. The following dif-
ference electron density map clearly indicated the posi-
tions of all hydrogen atoms bound to carbon atoms.
These positions were input, lowering the agreement
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index to 0-057, but some of the isotropic thermal par-
ameters went negative. This was attributed to the use
of the isolated hydrogen atom scattering factor, lead-
ing to an undesirable interaction between the thermal
parameter and aspherical electron density distribution
for bound hydrogen, as described by Jensen & Sun-
daralingam (1964). Using the contracted hydrogen
atom scattering factor of Stewart, Davidson & Simp-
son (1965), positive isotropic thermal parameters were
derived. All remaining hydrogen atom positions were
obtained from subsequent difference electron density
maps. Final values of R and wR of 0-046 and 0-051
respectively, were obtained for the 974 observed reflec-
tions. At this point two final cycles of weighted least-
squares refinement of all parameters were run using
all 1851 independent reflections recorded, the results
being R=0-095 and wR=0-049. No appreciable shifts
occurred. A final electron density difference map
showed no peak heights greater than 0-3 e.A-3, A sta-
tistical analysis of w42 [where 42=(|F,|—|F|)?] as a

Table 2. Refined hydrogen atom parameters

X y z B

H(2) 0-308 (3) 0-108 (2) 0-654 (3) 1-4 (5) A2
H®A3) —0-013 (3) 0172 (2) 0-785 (3) 1-2 (5)
H@4) 0-308 (3) 0-261 (2) 0-879 (3) 2:1 (6)
H(5) 0-044 (3) 0373 (2) 0-728 (4) 2-1 (6)
H(6A) 0-218 (4) 0-488 (2) 0-877 (4) 2-8 (6)
H(6B) 0-235 (3) 0-514 (2) 0-680 (3) 1-3 (5)
H(2") 0-162 (4) —0-002 (2) 0-509 (4) 39 (8)
H@3) 0-077 (5) 0-089 (3) 1-000 (5) 5-0 (10)
H(4") 0-147 (4) 0-277 (2) 1-100 (4) 2-8 (8)
H(6") 0-473 (4) 0-433 (3) 0:696 (5) 42 (9)

i
.Y

-

4

Fig.2. Packing diagram of the unit cell.
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function of scattering angle and magnitude of F, yielded
a nearly straight line indicating the relative weighting
scheme used was reasonable. The final value of
wA4?[(No— Ny) was 1-11.

In Table 1 are listed the final positional and thermal
parameters of the heavy atoms along with their stan-
dard deviations. In Table 2 are the refined positional
and isotropic thermal parameters and their standard

Table 3.
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1851 independent recorded and calculated structure
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given in Table 4 and shown in Fig. 3. The estimated
standard deviations were calculated using the variance-
covariance matrix and O RFFE program.

Description and discussion of the structure

The planarity of the carbonyl group imparts a dis-
torted half-chair conformation to the ring of the
D-glucono-(1,5)-lactone molecule. The CH,OH and
OH groups occupy the most equatorial positions pos-
sible as shown in Fig. 1. The bond distances and angles
are in generally good agreement with those reported
in the literature. The average C-C and C-OH distances
are 1-51 and 1-42 A respectively, compared with 1-52
and 1-42 A reported in the neutron diffraction study
of a-p-glucose (Brown & Levy, 1965). The C(5)-0O(5)
distance is significantly longer, however, being 1-47 A.
The C(1)-O(1) and C(1)-O(5) distances are 1-21 and
1-32 A, typical of the distances found in normal esters.
Peaks at 1740 and 1225 cm~! in the infrared spectrum
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substantiate this comparison. The angles about C(1)
are all nearly 120° in accordance with the expected sp?
hybridization. The only other angles which differ ap-
preciably from the tetrahedral angle of 109-5° are
C(1)-0(5)-C(5) and C(4)-C(5)-C(6), the former being
124°, substantially larger than the 114° found in «-D-
glucose.

The conformation of six-membered rings involving
a planar group has been studied by Mathieson (1963).
Either a boat or a half-chair conformation is possible
with a planar restraint on four of the six ring atoms.
The planarity of the C-C-O-C group is associated

(0]
with the valence bond contribution of the resonance

+
form C-C=0-C. From geometrical considerations it

I
O-
was suggested that rings containing the carbon—carbon

Table 4. Interatomic distances and angles*

(a) Distances

E.s.d.=0-003 A
C(1)-C(2) 1-527 A C(1)-0(1) 1-208 A
C(2)-C(3) 1:508 C(1)-0(5) 1-324
C(3)-C(4) 1-512 C(2)-0(2) 1-414
C(4)-C(5) 1-525 C(3)-0(3) 1-419
C(5)-C(6) 1-491 C(4)-0(4) 1-427
C(5)-0(5) 1-468
C(6)-0(6) 1-418
(b) Angles
E.s.d.=0-2°
C(2)-C(1)-0(1) 120-7° C(3)-C(4)-C(5) 110-7°
C(2)-C(1)-0(5) 119-8 C(3)-C(4)-0(4) 1119
0O(1)-C(1)-0(5) 119-4 C(5)-C(4)-0(4) 105-1
C(1)-C(2)-C(3) 113-5 C(4)-C(5)-C(6) 114-7
C(1)-C(2)-0(2) 109-2 C(4)-C(5)-0(5) 1110
C(3)-C(2)-0(2) 111-2 C(6)-C(5)-0(5) 106-1
C(2)-C(3)-C(4) 108-8 C(5)-0(5)-C(1) 1241
C(2)-C(3)-0(3) 107-8 C(5)-C(6)-0(6) 113-1

C(4)-C(3)-0(3) 111-5

* See Fig. 3 for distances and angles associated with hydrogen positions.

Fig.3. (a) Bond distances, e.s.d. 0-03 A and (b) bond angles, e.s.d. 2°.
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double bond would assume the half-chair conforma-
tion (Pasternak, 1951) while those containing the lac-
tone group would assume a boat conformation (Mc-
Connell, Mathieson & Schoenborn, 1962). The con-
formation of d-lactones has since been studied by
Cheung, Overton & Sim (1965). They confirmed the
planarity of the lactone group but suggested that both
the boat and half-chair conformations satisfy this con-
dition in the J-lactones.

For glucono-d-lactone the lactone group carbon
atom C(5) is 0-28 A out of the best least-squares car-
bonyl plane formed by atoms C(1), O(1), C(2) and O(5)
which are planar within 0-02 A. This non-planarity of
the lactone group has also been reported by Jeffrey
& Kim (1966) for certain y-lactones. For ring systems
where the base atoms are not coplanar, the ring is best
characterized by its dihedral angles, ¢ (Lambert, Car-

hart & Corfield, 1969). Using the ring of cyclohexane
(p=>54'5°) as a reference, a molecule may be termed
‘flattened’ or ‘puckered’ depending upon whether ¢ is
less than or greater than 54-5°. Comparison of the
dihedral angles of various chair forms given in Table 5
indicates that the ring conformation of p-glucono-(1,5)-
lactone can be best described as a distorted half-chair.
The ‘puckering’ distortions are caused by the short
bonds C(1)-0O(5) and O(5)-C(5) (short compared with
a C-C single bond), while the large C(5)-O(5)-C(1)
angle allows for some ‘flattening’. The requirements
for minimum configuration energy are met by lower-
ing C(5) out of and C(4) nearer to, the carbonyl plane
resulting in a distorted half-chair conformation.

The crystal structure of D-glucono-(1,5)-lactone is
shown in Fig. 2. As indicated from the equation of the
best least-squares plane, the normal to the plane is

Table 5. Dihedral angles*

9 (1,2) 9 (2,3)
) 4 € . 248 (3) 47-3 (3)
MEL
@t bavS:}l 17-2 50-2
s A8
3t m 436 (8) 548 (7)

¢ 3.4 ¢ (4,5) ¢ (5,6) ¢ (6,1)
617 (2) 509 (3) 28-2 (3) 152 (4)
69-0 527 235 42

609 (6) 56'3 (7) 48-3 (8) 40-8 (8)

* The dihedral angle, ¢, for a sixfold symmetric molecule with internal bond angles, §, is given by

cos ¢= —cos /(1 +cos 8) .

For cyclohexane (8=111:5°), ¢=54-5°.

T From pentachlorocyclohexene (Pasternak, 1951).
i From 4,4-diphenylcyclohexanone (Lambert et al., 1968).

Fig.4. Stereogram of hydrogen bonding in p-glucono-(1,5)-lactone showing molecule and its eight hydrogen-bound neighbors.
Ix, 9,211 %, 9, 1+z; L x, p, —14+2z; IVE+x, 5—p, 1=2; Vi+x,3—y,2—2z VI —3+4x,4—y, 1—2z; VIL —%+x, 1—p,

2—z; VIII 1—x, —y, —3+2; IX 1—x, —y, 3+z
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Table 6. Hydrogen bonds*

Bond
X-H---Y-M X-H
02, D-H(2’, 1)---0O(3, VIII)-C(3, VIII) 078 3) A
0@, D-H(@3’, I)---0(6, VII)—C(6, VII) 0-71 (3)
O(4, I)-H#', D---0(1, I1I) —C(1, I1I) 0-73 (3)
O(6, I)-H(6’, I)---0(2, IV) —C(2, 1V) 0:76 (3)
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Distance Angle
H---Y X---Y X-H---Y H---Y-M
1198 3) A 2:720 3) A 160 (3)° 132 (1)°
2:01 (4) 2-680 (3) 157 (4) 131 (1)
2-12 3) 2:849 (3) 171 (3) 136 (1)
2:15 (4) 2-882 (3) 162 (3) 119 (1)

* Refer to Fig. 4.

nearly parallel with the x direction. The molecular
packing in the crystal is largely dictated by intermol-
ecular hydrogen bonds. There is also some ordering
of the lactone dipoles in the x direction although the
approximate separation of a/2=3-9 A is so large that
this effect is probably minor. The infrared spectrum
contains a broad absorption band below 3500 cm-!
instead of between 3500 and 3700 cm~! expected for
unbound O-H groups. This is in agreement with the
X-ray results which indicate a complete system of hy-
drogen bonds propagating three-dimensionally as
shown in Fig. 4. The O---O lengths range from 2-68
to 2-88 A in good agreement with a plot of stretching
frequency vs. the O---O distance given by Nakamoto,
Margoshes & Rundle (1955). The O-H groups bound
to carbon atoms C(2), C(3) and C(6) participate in two
hydrogen bonds, acting as a donor in one and accep-
tor in another. The C(4) O-H group acts only as a
donor in a hydrogen bond involving an O(1) atom of
an identically oriented molecule at a unit-cell transla-
tion in the z direction. Each molecule is hydrogen
bonded to eight surrounding neighbors. The appro-
priate distances and angles are given in Table 6. It
should be remembered that the angles given are based
on the rather short O-H distances obtained by refining
the X-ray data. Note that the H---Y-M angles some-
what approximate that expected for a distorted tetra-
hedral angle.

Conclusion

Inhibition studies of glycosidases have shown that the
corresponding d-aldonolactones are generally more ef-
ficient inhibitors than are the y-lactones (Li, 1967,
Conchie, Gelman & Levy, 1967). Certain polyols have
also been found to inhibit glucosidases (Kelemen &
Whelan, 1966), the most effective having a configura-
tion similar to glucose between C(3) and C(6). Glucose
also inhibits glucosidase activity, but Heyworth & Wal-
ker (1962) reported that the enzyme has a relatively
low affinity for glucose compared with the glucono-d-
lactone.

Leaback (1968) has recently reaffirmed that the spe-
cificity and high affinity of the lactone for the enzyme
probably arises from the conformational similarities
between the lactone and the transition state of the nor-
mal substrate. Leaback also concluded that the high
affinity of glycosidases for the corresponding J-lac-
tones was not a consequence of the lactone group it-
self, but of some property which it conferred to the
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ring. It was postulated that the transition state involved
an oxy-carbonium ion in a half-chair pyranose ring.
This half-chair conformation was also expected for the
o-lactone ring. The results of this investigation provide
detailed structural information about this important
inhibitor and establish the stable conformation of the
glucose half-chair ring.

The authors wish to acknowledge Professor Dexter
French of the Iowa State University Biochemistry and
Biophysics Department for his suggestion of the prob-
lem and helpful discussions. In addition to programs
written in this laboratory for the IBM 360-65, other
programs used in this work were Johnson’s ORTEP
to prepare Figs. 1, 2 and 4, Busing & Levy’s ORFFE
to calculate errors, and a local version of Neuman’s
ORFLS-D which is a modified version of Busing, Mar-
tin & Levy’s ORFLS.
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